Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.329
Filtrar
1.
Stem Cell Reports ; 19(3): 414-425, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428413

RESUMO

Myeloid cells, which originate from hematopoietic stem/progenitor cells (HSPCs), play a crucial role in mitigating infections. This study aimed to explore the impact of mesenchymal stem/stromal cells (MSCs) on the differentiation of HSPCs and progenitors through the C-C motif chemokine CCL2/CCR2 signaling pathway. Murine MSCs, identified as PDGFRα+Sca-1+ cells (PαS cells), were found to secrete CCL2, particularly in response to lipopolysaccharide stimulation. MSC-secreted CCL2 promoted the differentiation of granulocyte/macrophage progenitors into the myeloid lineage. MSC-derived CCL2 plays an important role in the early phase of myeloid cell differentiation in vivo. Single-cell RNA sequencing analysis confirmed that CCL2-mediated cell fate determination was also observed in human bone marrow cells. These findings provide valuable insights for investigating the in vivo effects of MSC transplantation.


Assuntos
Quimiocina CCL2 , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Diferenciação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473995

RESUMO

Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines.


Assuntos
Quimiocina CCL2 , Interleucina-6 , Humanos , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1336492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510961

RESUMO

Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)ß to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.


Assuntos
Quimiocina CCL2 , Epidermodisplasia Verruciforme , MicroRNAs , Animais , Humanos , Camundongos , Quimiocina CCL2/metabolismo , Epidermodisplasia Verruciforme/metabolismo , Papillomavirus Humano , Queratinócitos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
J Cell Biochem ; 125(4): e30535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348687

RESUMO

Strong evidence has indicated that upregulation of chemokine (CC motif) ligand-2 (CCL2) expression and the presence of an inflammatory tumor microenvironment significantly contribute to the migratory and invasive properties of oral squamous cell carcinoma, specifically oral tongue squamous cell carcinoma (OTSCC). However, the precise epigenetic mechanism responsible for enhanced CCL2 expression in response to the inflammatory mediator tumor necrosis factor alpha (TNF-α) in OTSCC remains inadequately elucidated. We have demonstrated that the production of CCL2 can be induced by TNF-α, and this induction is mediated by the chromatin remodel protein BRG1. Through the use of a chromatin immunoprecipitation (ChIP) assay, we have found that BRG1 was involved in the recruitment of acetylated histones H3 and H4 at the CCL2 promoter, thereby activating TNF-α-induced CCL2 transcription. Furthermore, we have observed that recruitment of NF-κB p65 to the CCL2 promoter was increased following BRG1 overexpression and decreased after BRG1 knockdown in OTSCC cells. Our Re-ChIP assay has shown that BRG1 knockdown completely inhibits the recruitment of both acetylated histone H3 or H4 and NF-κB to the CCL2 promoter. In summary, the findings of our study demonstrate that BRG1 plays a significant role in mediating the production of CCL2 in OTSCC cells in response to TNF-α stimulation. This process involves the cooperative action of acetylated histone and NF-κB recruitment to the CCL2 promoter site. Our data suggest that BRG1 serves as a critical epigenetic mediator in the regulation of TNF-α-induced CCL2 transcription in OTSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Fator de Necrose Tumoral alfa , Humanos , Carcinoma de Células Escamosas/genética , Quimiocina CCL2/metabolismo , Epigênese Genética , Histonas/metabolismo , Neoplasias Bucais , NF-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua/genética , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
5.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351345

RESUMO

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Assuntos
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliais , Neoplasias Hepáticas , 60491 , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
6.
J Virol ; 98(2): e0165223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299866

RESUMO

CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1ß+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.


Assuntos
Infecções por HIV , HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Replicação Viral , Animais , Feminino , Masculino , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Progressão da Doença , HIV/classificação , HIV/crescimento & desenvolvimento , HIV/patogenicidade , HIV/fisiologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Intestinos/virologia , Tecido Linfoide/virologia , Macaca mulatta/imunologia , Macaca mulatta/metabolismo , Inoculações Seriadas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Tropismo Viral , Virulência , Receptores CCR5/metabolismo
7.
Diabetes ; 73(5): 713-727, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320300

RESUMO

Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) is involved in lipid and glucose metabolism via mRNA processing. However, whether and how HNRNPA1 alters adipocyte function in obesity remain obscure. Here, we found that the obese state downregulated HNRNPA1 expression in white adipose tissue (WAT). The depletion of adipocyte HNRNPA1 promoted markedly increased macrophage infiltration and expression of proinflammatory and fibrosis genes in WAT of obese mice, eventually leading to exacerbated insulin sensitivity, glucose tolerance, and hepatic steatosis. Mechanistically, HNRNPA1 interacted with Ccl2 and regulated its mRNA stability. Intraperitoneal injection of CCL2-CCR2 signaling antagonist improved adipose tissue inflammation and systemic glucose homeostasis. Furthermore, HNRNPA1 expression in human WAT was negatively correlated with BMI, fat percentage, and subcutaneous fat area. Among individuals with 1-year metabolic surgery follow-up, HNRNPA1 expression was positively related to percentage of total weight loss. These findings identify adipocyte HNRNPA1 as a link between adipose tissue inflammation and systemic metabolic homeostasis, which might be a promising therapeutic target for obesity-related disorders.


Assuntos
Resistência à Insulina , Obesidade , Humanos , Camundongos , Animais , Regulação para Cima , Ribonucleoproteína Nuclear Heterogênea A1/genética , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo
8.
J Cell Physiol ; 239(4): e31192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284280

RESUMO

Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Receptores de Quimiocinas , Quimiocina CCL2/metabolismo , Ligantes , Quimiocinas , Inflamação , Obesidade , Receptores CCR2/metabolismo
9.
BMC Cancer ; 24(1): 75, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221626

RESUMO

BACKGROUND: Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS: We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS: The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS: PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Medula Óssea/patologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Nus , Obesidade/patologia , Ácido Palmítico/farmacologia , Neoplasias da Próstata/patologia , Microambiente Tumoral
10.
PLoS Pathog ; 20(1): e1011710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206985

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma/metabolismo , Toxoplasmose/metabolismo
11.
Tissue Cell ; 86: 102294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181585

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Fibronectin type III domain-containing protein 4 (FNDC4) is a secretory factor that can regulate inflammatory diseases. However, the role of FNDC4 in RA has not been reported so far. METHODS: The expression of FNDC4 in synovial tissues of RA was analyzed by GEO database (GSE55235 dataset). Then, the expression of FNDC4 in RA fibroblast-like synoviocytes (RA-FLSs) was detected by RT-qPCR and western blot. After constructing FNDC4 overexpression plasmid, cell proliferation and apoptosis were detected. Wound healing and transwell assays were used to detect cell migration and invasion. Then we examined the expression of cytokines related to cell inflammation. Subsequently, the regulatory mechanism of FNDC4 was further discussed. We detected the expression of CCL2 and ERK signaling pathway related proteins downstream of FNDC4. Finally, the mechanism was discussed through the overexpression of FNDC4 and CCL2 and the addition of ERK pathway activator tBHQ. RESULTS: GEO database showed that FNDC4 expression decreased in synovial tissues of RA. FNDC4 expression was also decreased in RA-FLSs. Overexpression of FNDC4 inhibited the proliferation, invasion and migration of RA-FLSs whereas promoted the cellapoptosis. Overexpression of FNDC4 inhibited the release of inflammatory factors in RA-FLSs. The regulatory effect of FNDC4 is achieved by inhibiting the CCL2/ERK signaling pathway. CONCLUSION: FNDC4 reduces inflammation, proliferation, invasion and migration of RA-FLSs in RA by inhibiting CCL2/ERK signaling.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/farmacologia , Fibroblastos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais/genética , Membrana Sinovial , Sinoviócitos/metabolismo , Fibronectinas/metabolismo
12.
Biomed Pharmacother ; 170: 115974, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056240

RESUMO

PURPOSE: Canagliflozin exert anti-cancer effects in several types of cancer including thyroid cancer (TC). However, whether it could modulate chemokines secreted in TC microenvironment is still unknown. The aim of the present study is to evaluate whether Canagliflozin could inhibit pro-tumorigenic chemokines CXCL8 and CCL2 and/or the TC cell migration induced by them. EXPERIMENTAL DESIGN: TC cell lines, TPC-1 and 8505C, HUVEC and normal thyroid cells NHT were treated with increasing concentrations of Canagliflozin. Viability was assessed by WST-1 and colony formation/proliferation by cristal violet. Chemokines were measured in cell supernatants by ELISA. mRNAs were evaluated by RT-PCR. TC migration (trans-well) and HUVEC proliferation (cristal violet) were assessed by treating cells with Canagliflozin alone or in combination with CXCL8 or CCL2. RESULTS: Canagliflozin reduced TC, HUVEC and NHT cells viability. The ability to form colonies of TC and the HUVEC proliferation (basal and CXCL8 or CCL2-induced) was also inhibited. mRNA and the secretion of CXCL8 was reduced in all cell types. The secretion of CCL2 was reduced by Canagliflozin in all cell types whereas its mRNA levels were reduced only in TPC-1. IL-6 was reduced in all cell types, while CXCL10 increased. More interestingly the CXCL8 and CCL2-induced TC cell migration as well as HUVEC proliferation was inhibited by Canagliflozin in both cell types. CONCLUSION: Canagliflozin exerts anti-cancer effects not only by reducing TC viability or colonies formation, but also by modulating two pro-tumorigenic chemokines resulting in reduced TC cells migration. These results expand the spectrum of canagliflozin-promoted anti-cancer effects.


Assuntos
Canagliflozina , Neoplasias da Glândula Tireoide , Humanos , Canagliflozina/farmacologia , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Interleucina-8/metabolismo , Quimiocinas , Movimento Celular , RNA Mensageiro , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Microambiente Tumoral
13.
Biochem Biophys Res Commun ; 693: 149367, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38091841

RESUMO

Cardiac remodeling (CR), characterized by cardiac hypertrophy and fibrosis, leads to the development and progression of heart failure (HF). Nowadays, emerging evidence implicated that inflammation plays a vital role in the pathogenesis of CR and HF. Astragaloside IV (AS-IV), an effective component of Astragalus membranaceus, exerts cardio-protective and anti-inflammatory effects, but the underlying mechanism remains not fully elucidated. This present study aimed to investigate the effects of AS-IV on cardiac hypertrophy and fibrosis in cultured H9C2 cells stimulated with LPS, as well as explore its underlying mechanisms. As a result, we found AS-IV could reduce the cell surface size, ameliorate cardiac hypertrophy and fibrosis in LPS-induced H9C2 cells. To specify which molecules or signaling pathways play key roles in the process, RNA-seq analysis was performed. After analyzing the transcriptome data, CCL2 has captured our attention, of which expression was sharply increased in model group and reversed by AS-IV treatment. The results also indicated that AS-IV could ameliorate the inflammatory response by down-regulating NF-κB signaling pathway. Additionally, a classical inhibitor of CCL2 (bindarit) were used to further explore whether the anti-inflammatory effect of AS-IV was dependent on this chemokine. Our results indicated that AS-IV could exert a potent inhibitory effect on CCL2 expression and down-regulated NF-κB signaling pathway in a CCL2-dependent manner. These findings provided a scientific basis for promoting the treatment of HF with AS-IV.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo , Fibrose , Quimiocina CCL2/metabolismo
14.
J Pharm Pharmacol ; 76(2): 138-153, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38127312

RESUMO

BACKGROUND: The chemokine ligand CCL2 and its cognate receptor CCR2 have been implicated in the pathogenesis of a wide variety of diseases. Hence, the inhibition of the CCL2/CCR2 signaling pathway has been of great attention in recent studies. Among suggested medications, statins known as HMG-COA reductase inhibitors with their pleiotropic effects are widely under investigation. METHOD: A comprehensive literature search on Scopus and PubMed databases was conducted using the keywords 'CCL2', 'CCR2', 'monocyte chemoattractant protein-1', 'HMG-COA reductase inhibitor', and 'statin'. Both experimental and clinical studies measuring CCL2/CCR2 expressions following statin therapy were identified excluding the ones focused on cardiovascular diseases. RESULTS: Herein, we summarized the effects of statins on CCL2 and CCR2 expression in various pathologic conditions including immune-mediated diseases, nephropathies, diabetes, rheumatic diseases, neuroinflammation, inflammatory bowel diseases, gynecologic diseases, and cancers. CONCLUSION: For the most part, statins play an inhibitory role on the CCL2-CCR2 axis which implies their potential to be further developed as therapeutic options in non-cardiovascular diseases either alone or in combination with other conventional treatments. However, the existing literature mostly focused on experimental models and is therefore inadequate to reach a conclusion.


Assuntos
Doenças Cardiovasculares , Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Inflamatórias Intestinais , Neoplasias , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Quimiocina CCL2/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Receptores CCR2/metabolismo
15.
Brain Behav Immun ; 115: 308-318, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914098

RESUMO

Maternal stress during pregnancy is prevalent and associated with increased risk of neurodevelopmental disorders in the offspring. Maternal and offspring immune dysfunction has been implicated as a potential mechanism by which prenatal stress shapes offspring neurodevelopment; however, the impact of prenatal stress on the developing immune system has yet to be elucidated. Furthermore, there is evidence that the chemokine C-C motif chemokine ligand 2 (CCL2) plays a key role in mediating the behavioral sequelae of prenatal stress. Here, we use an established model of prenatal restraint stress in mice to investigate alterations in the fetal immune system, with a focus on CCL2. In the placenta, stress led to a reduction in CCL2 and Ccr2 expression with a concomitant decrease in leukocyte number. However, the fetal liver exhibited an inflammatory phenotype, with upregulation of Ccl2, Il6, and Lbp expression, along with an increase in pro-inflammatory Ly6CHi monocytes. Prenatal stress also disrupted chemokine signaling and increased the number of monocytes and microglia in the fetal brain. Furthermore, stress increased Il1b expression by fetal brain CD11b+ microglia and monocytes. Finally, intra-amniotic injections of recombinant mouse CCL2 partially recapitulated the social behavioral deficits in the adult offspring previously observed in the prenatal restraint stress model. Altogether, these data suggest that prenatal stress led to fetal inflammation, and that fetal CCL2 plays a role in shaping offspring social behavior.


Assuntos
Quimiocina CCL2 , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Ligantes , Monócitos/metabolismo , Comportamento Social
16.
BMC Genomics ; 24(1): 746, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057698

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor with a poor prognosis. The C-C motif chemokine ligand 2 (CCL2) has shown abnormal expression associated with progression of multiple malignancies, however, its role in predicting the prognosis and immunotherapy response of GBM remains poorly understood. RESULTS: CCL2 was highly expressed in GBM as analyzed by integrating CGGA, GEPIA and UALCAN online platforms, and further verified by histologic examinations, qRT-PCR analysis, and independent GEO datasets. CCL2 could serve as an independent prognostic factor for both the poor overall survival and progression-free survival of GBM patients based on TCGA data, univariate and multivariate cox analyses. Functional enrichment analysis revealed that CCL2 mainly participated in the regulation of chemokine signaling pathway and inflammatory response. Further, CCL2 expression was positively correlated with CD4 T cells, macrophages, neutrophils and myeloid dendritic cells infiltrating GBM as calculated by the TIMER2.0 algorithm. Importantly, the tumor immune dysfunction and exclusion (TIDE) algorithm showed that in CCL2-high GBM group, the expression of CD274, CTLA4, HAVCR2 and other immune checkpoints were significantly increased, and the immune checkpoint blockade (ICB) therapy was accordingly more responsive. CONCLUSIONS: CCL2 can be used as a predictor of prognosis as well as immunotherapy response in GBM, offering potential clinical implications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Ligantes , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Prognóstico , Quimiocinas , Imunoterapia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico
17.
J Exp Clin Cancer Res ; 42(1): 290, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915048

RESUMO

BACKGROUND: Invasion and metastasis are the main causes of unfavourable prognosis in patients diagnosed with bladder cancer. The efficacy of immunotherapy in bladder cancer remains suboptimal due to the presence of an immunosuppressive microenvironment. The novel protein family with sequence similarity 171B (FAM171B) has been identified, but its precise role and mechanism in bladder cancer remain unclear. METHODS: In this study, we conducted an analysis to investigate the associations between FAM171B expression and the prognosis and clinicopathological stage of bladder cancer. To this end, we utilized RNA sequencing data from the TCGA and GEO databases, as well as tumor tissue specimens obtained from our clinical centre. RNA sequencing analysis allowed us to examine the biological function of FAM171B at the transcriptional level in bladder cancer cells. Additionally, we used immunoprecipitation and mass spectrometry to identify the protein that interacts with FAM171B in bladder cancer cells. The effects of FAM171B on modulating tumor-associated macrophages (TAMs) and vimentin-mediated tumor progression, as well as the underlying mechanisms, were clarified by phalloidin staining, immunofluorescence staining, ELISA, RNA immunoprecipitation, flow cytometry and a bladder cancer graft model. RESULTS: FAM171B expression exhibits strong positive correlation with poor survival outcomes and advanced clinicopathological stages in patients with bladder cancer. FAM171B significantly promoted bladder cancer growth and metastasis, accompanied by TAM accumulation in the microenvironment, in vivo and in vitro. Through studies of the molecular mechanism, we found that FAM171B contributes to tumor progression by stabilizing vimentin in the cytoplasm. Additionally, our research revealed that FAM171B enhances the splicing of CCL2 mRNA by interacting with heterogeneous nuclear ribonucleoprotein U (HNRNPU), ultimately leading to increased recruitment and M2 polarization of TAMs. CONCLUSIONS: In this study, we identified FAM171B as a potent factor that promotes the progression of bladder cancer. These findings establish a solid theoretical foundation for considering FAM171B as a potential diagnostic and therapeutic biomarker for bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Biomarcadores , Quimiocina CCL2/metabolismo , Prognóstico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/patologia , Vimentina/genética
18.
Viruses ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38005838

RESUMO

Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that ß-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.


Assuntos
Quimiocina CCL2 , Infecções por HIV , HIV-1 , HIV-2 , Humanos , Células Cultivadas , Regulação da Expressão Gênica , Soropositividade para HIV , HIV-1/genética , HIV-2/genética , Macrófagos , Virulência , Replicação Viral , Quimiocina CCL2/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia
19.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935566

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS: The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS: Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS: In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/uso terapêutico , Citoplasma/metabolismo , Citoplasma/patologia , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Poli C/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Microambiente Tumoral
20.
Biomed Pharmacother ; 168: 115792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924789

RESUMO

Ulipristal acetate (UPA) is a selective progesterone receptor modulator and is used for the treatment of uterine leiomyoma (a benign tumor). Uterine sarcoma which is highly malignant cancer with a poor prognosis is clinically resembled with uterine leiomyoma. There has been no experimental research on the effect of UPA on uterine sarcoma. In this study, we examined the efficacy of UPA in uterine sarcoma with in vitro and in vivo animal models. Cytotoxicity of UPA was determined in uterine sarcoma cell lines (MES-SA, SK-UT-1, and SK-LMS-1). Apoptotic genes and signaling pathways affected by UPA were analyzed by complementary DNA (cDNA) microarray of uterine sarcoma cell lines and western blot, respectively. An in vivo efficacy of UPA was examined with uterine sarcoma cell line- and patient-derived xenograft (PDX) mice models. UPA inhibited cell growth in uterine sarcoma cell lines and primary culture cells from a PDX mouse (PDX-C). cDNA microarray analysis revealed that CCL2 was highly down-regulated by UPA. Phosphorylation and the total expression of STAT3 were inhibited by UPA. UPA also inhibited CCL2 and STAT3 in PDX-C. The inhibitory effect of UPA had not changed in the overexpression of PR and treatment of progesterone. In vivo efficacy studies with cell line-derived xenografts and a PDX model with leiomyosarcoma, a typical uterine sarcoma, demonstrated that UPA significantly decreased tumor growth. UPA had significant anti-tumor effects in uterine sarcoma through the inhibition of STAT3/CCL2 signaling pathway and might be a potential therapeutic agent to treat this disease.


Assuntos
Leiomioma , Sarcoma , Neoplasias Uterinas , Feminino , Humanos , Animais , Camundongos , Receptores de Progesterona/metabolismo , DNA Complementar/farmacologia , DNA Complementar/uso terapêutico , Neoplasias Uterinas/patologia , Leiomioma/patologia , Transdução de Sinais , Morte Celular , Sarcoma/tratamento farmacológico , Quimiocina CCL2/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...